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where pi'=pi, p2'=P2A2/(7+A)2. One can now go ahead 
and calculate Mi/ by using N/D method. An insight 
into the significance of the cutoff is obtained if one 
considers a one-channel calculation. In that case, before 
the cutoff is introduced, 

T=N/[1— f P—dt\ (35) 
/ V TJ t'{tf-t) J 

and after the cutoff is introduced, we have 

r=V('~/^4 (36) 

I. INTRODUCTION 

THE empirical success of the renormalized perturba­
tion solution of quantum electrodynamics has 

produced the hope that relativistic field theory can 
provide an adequate description of the physics of 
elementary particles. On the other hand, the infinities 
which are present in the perturbation expression for 
the unrenormalized quantities have made one cautious 
about taking the theory too seriously. 

In this work we will show that these infinities are not 
intrinsic to the theory but are due to the inadequacy 
of the usual perturbation method. We will attempt to 
develop an alternate perturbation approach to quantum 
electrodynamics which yields finite results for the basic 
unrenormalized Green's functions. In addition, in the 
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where N=NA2/(t+A)2. Thus, introducing a cutoff is 
equivalent to modifying N to make it more convergent; 
also, N contains a "greater" amount of information; 
i.e., we are introducing additional interaction to make 
the integral convergent. In the two-channel calculation, 
M12=M21=M12'A/(t+A) and M22=M22'A

2/(t+A)2. 
Again, we are introducing additional "interaction" in 
the form of a first-order pole at /= —A for Mu and M2\ 
and a second-order pole for M22. 

The calculations now proceed along the same lines as 
for the case of a sharp cutoff. The results from this are 
similar to the ones discussed in the main body of the 
paper. 

weak-coupling limit, we will give explicit expressions 
for these functions in the region far off the mass shell 
where ordinary perturbation theory fails. 

This method will work only for a spin-| fermion field 
coupled with a conserved current to a neutral vector 
field. Hence the results of this work will not be applicable 
to a general relativistic field theory. 

In quantum electrodynamics there are only three 
divergences (the minimum) in the ordinary perturbation 
treatment and they are a]l "weak" in the sense of being 
only logarithmically dependent on cutoffs. They are 
summarized by the constants 5tn, Z1( = Z2)) Z%, The 
divergence of the self-mass 8m is just the analog of 
the classical electromagnetic mass divergence. The 
divergence of the wave-function renormalization con­
stant Z2 represents an incompatibility of the pertur­
bation treatment of the interaction with the canonical 
commutation rule for the electron field. The divergence 
of the charge renormalization Z3 represents a similar 
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incompatibility for the electromagnetic field. The 
divergence of the vertex renormalization Z\ is associated 
with the fundamental electron-field-electromagnetic-
field interaction. As a consequence of gauge invariance 
Zi=Z2 (Ward's identity). 

The wave-function constant Z2 has no physical 
significance, since because of charge conservation the 
electron field is not linearly coupled to any source. 
In contrast, Z3 has an immediate physical significance, 
since the electromagnetic coupling to charges is linear 
in the field. Thus, the only physically meaningful 
divergences which arise in the usual perturbation 
treatment of quantum electrodynamics are Z3 and 
dm. 

Furthermore, the question of Z3 really takes one 
outside of the scope of a closed physical theory. The 
electron couples to all charged systems by means of 
vacuum polarization. Thus, when we make an assump­
tion about the high-energy behavior of the photon 
Green's function, we must keep in mind the fact that 
its form is influenced by all interactions. In this paper 
we shall consider only the mass question, which can be 
treated to some extent in the closed theory without 
the necessity of considering other systems. 

The renormalizations are closely related to the 
asymptotic behavior of the electron and photon Green's 
functions far off the "mass shell." If the constants are 
finite, then these functions must have in the asymptotic 
region the same form as their uncoupled analogs, and 
hence are independent of the coupling constant. But 
it is precisely from this domain that the divergent 
contributions to the renormalization constants arise. 
Hence, it has long been supposed that the theory as 
formulated in the ordinary way is not consistent: that 
these free asymptotic forms for the Green's function 
are incompatible with the interaction. We shall first 
show that the physically uninteresting renormalization 
constant, Z2(=Zi) can be made finite even in a pertur­
bation treatment of the interaction, without the 
introduction of any divergent renormalizations, pro­
vided only that Z3 is finite. This can be done if one 
makes a suitable choice of electromagnetic gauge. This 
means that we shall be able to write a linear integral 
equation for the vertex function TM, with a kernel whose 
"singular part" (the part of the kernel which gives 
divergences in perturbation theory) is expressed as a 
given power series. It is further an equation which 
does not contain divergences. In this case the only 
perturbation divergences are dm and Z3, which are 
confined to the electron Green's function S and photon 
Green's function D. We shall then show that if the 
Schwinger-Dyson equations for the exact S in terms 
of S, I \ , D is expanded as a series in S without the 
expansion of 5 or Z>, then the resulting equation for S 
will have finite nonperturbative solutions with no 
self-mass divergence provided only that the "mechani­
cal" or bare electron mass vanishes and providing that 

Z3 is finite. In a subsequent paper we shall show that 
we can also develop a finite perturbation theory for D 
within electrodynamics using the linear vertex equation 
that we shall obtain from our equation for S by using 
gauge invariance. The equations we shall study will 
provide us with the explicit forms for S and D far off 
the mass shell, expressed in terms of constants given as 
power series in the "bare" (unrenormalized) coupling 
constant which are finite term by term. The solutions 
we obtain will be valid for all values of the coupling 
constant provided that it lies within the assumed finite 
radius of convergence of the power series. In a pre­
liminary account of this work1 we stressed what was 
actually only a first-order approximation. In this paper 
we shall describe the general method which can be used 
to systematically compute all functions. 

II. CHOICE OF GAUGE 

In this section we will show that if Z3 is finite, then 
a gauge can be chosen so that Z\ has a finite expansion 
in a power series in the bare coupling constant ao= e^/kir. 
In the following sections, by employing this gauge in 
our calculation, we shall show that the electron self-
mass is finite if and only if the "mechanical" electron 
mass vanishes. If Z3 is finite, then the exact photon 
Green's function D(k2) has the property that 

k2D(k2)->l (2.1) 

as k2 —» oo. In all of the subsequent work, "asymptotic" 
will always mean for large space-like momenta. In this 
case, all integrations may be performed with a Euclidean 
metric. Since the dominant contribution to all radiative 
corrections comes when all Green's functions are far off 
the mass shell, we can compute the "divergent part" 
of the vertex function by using D(k2) — 1/k2, that is, in 
effect, by neglecting the photon self-energy. Of course, 
we must then establish that the theory does indeed 
provide for a finite Z3. This will be established in a 
subsequent paper. In this case, it follows from earlier 
work2 that in an arbitrary gauge of the form 

Dap= [ f t*- {kakp/k2)G-]D{k2) (2.2) 

if we include a cutoff defined by the replacement of 
Dhy 

l/k2-l/(k2+\2), 

then Z2 has the form 
Z2= (\2/m2y^^B(ao}G). (2.3) 

/ and B are functions only of the coupling constant ao 
and G. It has been shown3 that if the gauge is changed, 
Z2 changes in a simple and explicitly known way. If 
we let 

kakfi ( 1 1 \ 
*Da$= 7 , (2.4) 

k2 \k2+v? k2+\2/ 
1 K. Johnson, M. Baker, and R. Willey, Phys. Rev. Letters 11, 

518 (1963). 
2 M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954). 
3 K. Johnson and B. Zumino, Phys. Rev. Letters 3, 351 (1959). 
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then in this new gauge Z2' is expressed in terms of Zi 
by the relation 

Z2'=Z2(X
2/iU2)(a°/47r)7. (2.5) 

ix is chosen to avoid infrared divergences, which are 
present also in B only because of the conventional way 
of defining Z2. It is therefore obvious that a gauge 
change can be made so that Z% is independent of X, 
and hence finite as X —> °o. That is because 

Z/=JB(ao,G)(X2/^2)^«o^)(X2/M2)(ao/47r)^ (2.6) 

Thus, the transformation (2.4) with — aoy/Aw^f 
brings us to a gauge where Z2 is finite. It is a property 
of the "Landau"4 gauge (G= 1) that if / is computed it 
begins only in the fourth order; that is, in the second-
order perturbation theory, in this special gauge, Z2 is 
finite. However, if the corresponding calculations are 
made in the fourth order, logarithmic divergences are 
encountered. This means that the finite gauge in the 
fourth order has the form 

Dafi= \jae- (Wk*)GlD, (2.7) 

with G= 1+aoCi. In general, 

G=l+a 0 C 1 +ao 2 C 2 +- . . , (2.8) 

where the series has the property of having finite 
numerical constants independent of any dimensional 
parameter. Now, if we make Z2 finite by an appropriate 
choice of gauge, we also make Z\ finite, if we maintain 
Ward's identity. Hence this choice of gauge permits a 
perturbation expansion for the vertex function which 
is finite. By making Z2 finite, however, we do][not 
necessarily make the S function finite in perturbation 
theory, because of the self-mass divergence. We shall 
turn to this problem in the next section. 

III. ELECTRON SELF-ENERGY 

We have shown in the previous section that if we 
neglect vacuum polarization, the perturbation expan­
sion of the vertex function r„ is finite in an appropri­
ately chosen gauge. In this section we will see how to 
include the electron self-energy in a manner which 
maintains the finiteness of S and IV 

We begin with the Schwinger-Dyson equation5 

for S(p). 

1 
=yp+m0 

S(P) 

r W) 
J (2x)4 

Now suppose there exist finite solutions to (3.1) which 

4L. D. Landau, A. Abrikosov, and I. Halatnikov, Nuovo 
Cimento Suppl. 3, 80 (1956). 

6 F. J. Dyson, Phys. Rev. 75, 1736 (1949); J. Schwinger, Proc. 
Natl. Acad. Sci. U. S. 31, 455 (1951). 

•j 3 yp + f \ + lf\ \ + ... 

FIG. 1. Equation for electron Green's function. The lines repre­
sent the exact S and D functions. 

yield S and D functions having the same asymptotic 
form as the free Green's functions. Then in the 
appropriate gauge the expansion of TM in terms of the 
exact S and D must also be finite. Thus in Eq. (3.1) 
we can make such an expansion of I \ without intro­
ducing any new infinities. Equation (3.1) then becomes 

1 r (dp') 
=yp+m0+ieo2 —Dap{p-p')y«S{p')yt 

S(p) J (2TT)4 

r W)W) 
-W)2\ , Ng V«e(p-P')DUP-P") 

J (2TT) 8 

Xy"S(p')y"S(j>'+p"-pWS(p")y>+ • • •, (3.2) 

or in graphical form as expressed in Fig. 1. In the 
graphical expression we omit all graphs corresponding 
to expansions of S or D, since these are taken as exact 
in (3.2). Of course, we must remember that the gauge 
will also be defined in terms of a power series in ao, 
so that in (3.2) we must also expand the gauge constant 
G. Since the gauge is defined to be that which makes Z2 

finite, and thus yield an 6* with the asymptotic form 
1/yp which is independent of ao, the nth. order of a 
gauge term in D which appears in the mth order of the 
formal expression (3.2) will then contribute to the 
(m+n)th order of the equation which we propose for 
6*. For example, the true sixth-order terms in (3.2) are 
indicated graphically in Fig. 2. 

We can make a corresponding expansion of the 
Schwinger-Dyson (S.D.) equations for the electron 
Green's function S(A) in the presence of an external 

"6th Or^er" Self Energy Kernel Including Gauge Terms. 

k K 0 

k 

* * * ^ T Da*C2 

kak/3 

— • (g ap ~ - p r ) D 

FIG. 2. "Sixth-order" self-energy kernel including gauge terms. 
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field Ap. If this equation is written in coordinate Now S(x,y;A) determines the vertex function in 
space and truncated at any order, the resulting trun- coordinate space according to the definition, 
cated equation for S(x,y; A) is invariant under the ( . r , _ 
gauge transformation, r « ^ ^^/^oA,a)3S^y;A). (3.4) 

From (3.4) and from our expansion for S(x,y;A) 
corresponding to (3.2), we obtain a corresponding 

S _> g*b[x<*)-x(*)]$. (3.3) expansion for TM, 

-.Ap+dji, 

r W) 
T*(p+k, p) = 7fi~ieo2 / —-Da f i(p-p')rS(p'+k)T,>(p'+k, p')S(p')y* 

J (2TT)4 

+ (^o2)2 

(#o 

( 2 T ) 
/ ~ ^ ^ A ^ - / ) A ^ 

+S( / '+%^'+^ ' -£+£^^ 
+ S t e " + * ) 7 W + * " - p + * ) ^ • • •, (3.5) 

or in graphical form as expressed in Fig. 3. Again the 
same remarks about the gauge expansion are relevant 
here. Equation (3.5) is a linear integral equation for 
TM whose kernel is a power series in the exact Green's 
function S(p). If we truncate the expansions (3.2) 
and (3.5) at the same finite order, the solutions of the 
resulting approximate equations for S and I \ satisfy 
Ward's identity exactly as a consequence of (3.3) and 
(3.4). Thus the approximate values for Z2 and Z\ 
obtained from these solutions for S and FM are equal. 
Hence if we choose the gauge in the truncated (3.5) 
so that Zi is finite, then in the same gauge Z2 as obtained 
from the corresponding (3.2) will also be finite. In 
the following we will see under what conditions not 
only Z2 but also the complete $(p) as obtained from 
(3.2) is finite. First let us complete the above discussion 
by writing the equation for the D function. Da^ has 
the form 

D«p= Lgoe- (kJfi/W)(r\D; (3.6) 
we can write 

1/D=&(1+P), (3.7) 
where 

(Wg»v-k»kv)p 

(dp) . 2 f W) 
J (2TT)4 

TVy" 

x\s(p+k/2)T>(p+k/2,p-k/2)S(p-k/2) 

d 1 / d \ 2 d 
+^S(p)+-~(k-~) —~S(p) 

dpv 24 \ dp/ dpv 

(3.8) 

The additional terms in (3.S) are the contributions of 
the path integral from y to x used to make S(x,y; A) 
gauge invariant before using it to generate an expression 

for the current.6 The tensor structure of the left-hand 
side of (3.8), which expresses current conservation, 
is a consequence of the fact that the 5 and rM, which 
appear on the right-hand side of (3.8), are related by 
Ward's identity. The property of p necessary to ensure 
that D —> 1/k2 as k2—>co is p —»0. This property 
hinges upon the behavior of T^ which will be discussed 
in our next paper. 

Let us now analyze the expression (3.2) for S(p). 
We wish to find if it is possible that a solution to (3.2) 
exists which has the asymptotic property 

l/S(p)-^yp+m0 (3.9) 

as p2 —> oc. The general form for 1/S(p) is 

l/S(p) = yp(l+B(p2))+mQ+A(p2). (3.10) 

Condition (3.9) is then equivalent to the conditions 
B(p2) -^0,A (p2) - » 0. Thus, as p2 -> <*>, we must have 

1 m0+A(p2) 
S(p) _> - £ 1 - B m + _ . 

yp p2 
(3.11) 

Perturbation theory yields in general logarithmically 
divergent expressions for B(p2) and A(p2). These 

•LL ' s s y m b o l ' z e d By | , f r ° r ° Discussion of C, See Section 1ST 

FIG. 3. Equation for vertex function. 

6 J. Valatin, Proc. Roy. Soc. (London) A222, 93, 228 (1954); 
J. Schwinger, Phys. Rev. Letters 3, 296 (1959). 
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divergences in the functions B and A can be isolated 
in terms of two divergent constants A' and Bf which 
are the values of the functions A(p2) and B(p2) on the 
mass shell. A' and Br are gauge-dependent, while 
the self-mass hm——mBt-\-A' is independent of the 
gauge constant G. One might then hope to find a gauge 
in which the self-mass divergence is completely con­
tained in A'. In such a gauge Br is finite and hence also 
the function B(p2). Of course this gauge is just the 
gauge which makes Z\ finite in (3.5) as mentioned 
previously. Now the only source of the Dirac matrix 1 
in our equations is the mo term in (3.2), since the 
coupling alwa}% introduces an even number of YM 

matrices. Hence, it is clear that the self-mass divergence 
must be proportional to mo. Indeed, we see that the 
most divergent contribution to A arises from inserting 
l/yp-\-nio/p2 for 5 in the right side of (3.2) and retaining 
the terms linear in w0. This suggests that if mo=0, 
then perhaps the term A can "generate itself." That is, 
the resulting^homogeneous equation for A may have a 
nontrivial solution. In this case perhaps a completely 
finite solution to (3.2) is possible. We will show that 
this is indeed the case if we in addition continue to 
assume that D(k2) —> 1/k2 as k2—> <*>. 

We being by analyzing the first approximation to 
(3.2). 

1 

S(p) 
= yp+m0 

r W) 
+ieo2 Da(i(p-pf)y«S(p')yK (3.12) 

J (2TT)4 

Under the assumption (to be verified) that the asymp­
totic form of 1/S(p) is completely characterized by the 
contributions from large p' to the integral in (3.12), we 
get from (3.10), (3.11), and (3.12), 

ypB(p2)+A(p2) 

W) 
= te<? 

( 2T> 
•Ba^p-p')r\ 

•ip' 
[ 1 + 2 W ] 

m0+A(p,2y 

which is valid as p2 —> oo. 
The above equation then separates into 

r W) i 
B(p2)yp=ie0

2 Dae(p~-p')y°— 
J (2TT)4 yp' 

Equations (3.13) and (3.14) then serve to determine 
the leading contributions to A (p2) and B (p2) for large 
p2. If we put D(k2) = 1/k2, (3.13) yields a logarithmically 
divergent B, unless we choose G= 1. In this gauge (the 
Landau gauge), the contribution of the asymptotic form 
of D, i.e., 1/k2, to B according to (3.13) is zero, and 
hence the asymptotic form of B depends upon the 
leading deviations of D(k2) from 1/k2 at high k2. For 
example, if D— 1/k2 —» (1/k2) (l/k2)e then one can show 
from (3.13) that B(p2)-> (1/p2)* for small e. In any 
case in the Landau gauge the infinities in (3.9) appear 
only in the equation for A (p2). However, if wo=0, then 
(3.14) has perfectly finite solutions. For in that case it 
becomes 

f (dp') A(p'*) 
A(f) = -3ie<? / -L-D{p~pTy-J—. (3.15) 

J (2x)4 " P'2 

Equation (3.15) is solved in Appendix A. For small 
ao the solution is 

A(pi)=Aa(l/p^o'i% (3.16) 

where Ao is an undetermined constant. In obtaining 
(3.16) only the asymptotic form of D, (1/k2), was used. 
If D-l/k2->(l/k2)(l/k2)% then this would produce 
corrections to A of the form (l/p2)Za^^+\ Now we must 
add to Eq. (3.2) the condition that the electron has a 
finite rest mass m; 1/5= 0 when yp=—m. Since there is 
no input mass or scale in the theory we are free to 
choose the scale of energy to be the physical mass m of 
the electron. Then we require that 1/5=0 when 
yp= — 1, and that 1/5 has no other zeros. In order to 
impose this condition, it is necessary to investigate 
Eq. (3.2) in the nonasymptotic region. That is, if we 
imagine integrating (3.2) down from large p2 beginning 
with (3.16), then the solution will be a function of two 
parameters ao and Ao. We must select A0 to fit the 
condition that the physical mass of the electron is one. 

Since the asymptote to A, A0(l/p
2yaolAT, "replaces" 

the bare mass in the theory, and because at low mo­
menta this acts in the equations for small ao essentially 
like a constant, the parameter Ao may be regarded in 
that domain effectively like a "mechanical" mass. In 
the traditional view the mechanical mass was a param­
eter chosen to fit the constraint that the physical mass 
be m. Here, A o replaces it. It, however, can be calculated 
with perturbation techniques and has an expansion of 
the form A o= l+ao#i+ 

We now proceed to analyze the next approximation 
to (3.2), 

yp' 

Xy'll+Bip*!, (3.13) _ l - = 7 j + f e o 2 f ^llDap(p-p>)y«s(p'he 
S(p) • J ( 2 T T ) 4 

f(dp') /mo+A(p'2)\ 
A (p2) = ieo2 / —fytDafiip-tri , (3.14) 

J (2TT)4 \ p'2 ) 
(ieo2} 1 

( 2 T ) « 

(dp') (dp") 

( 2 T ) « 

•DaP(j>-p')Dl>,(p-i/,)Y> 

as p2 XS(p')y»S(p'+p"-p)yf>S(p')r. (3.17) 
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In this case if we use the Landau gauge and insert 
S —-> 1/yp' into the above equation, a logarithmic 
divergence develops in the second term. This is, of 
course, to be expected, and we must thus regauge so 
that the vertex equation corresponding to (3.17) yields 
a finite Z±. This is done in Appendix B and yields 

f kakfi/ 3 ao \ l 
/>«/*-> ga, H 1 \D(#). (3.18) 

L k2 \ 8TT/ J 

If we use the gauge (3.18) in (3.17) and insert 
S —-»1/yp', then the logarithmic divergence in the 
second term is canceled by the logarithmic divergence 
in the first term generated by the <XQ term in the gauge 
function. I t must be remembered that (3.2) is an 
integral equation for S(p) whose kernel and whose 
gauge has been expanded in a power series in ceo. Since 
the expansion of the gauge function contributes to this 
expansion of the kernel, we must consistently keep all 
terms of the same order in the kernel. We can solve 
(3.17) asymptotically by inserting (3.10) and (3.11) 
(with wo=0) in (3.17) and linearizing the resulting 
equations in A and B. The terms in A2 and B2 fall off 
even more rapidly. Equation (3.17) then breaks up 
into two linear integral equations for A and B. The 
equation for B, because of the choice of gauge, has an 
inhomogeneous term which is finite and vanishes with 
D= 1/k2. However, as before, in order to determine the 
dominant behavior of B for large p2, we need to know 
the corrections to the high-& limit of D(k2). The equa­
tion for A (p) is written in Appendix B. On dimensional 
grounds one can see that there is a solution of the form 
A(p2) = Ao(l/p2)e. In fact, it is clear on dimensional 
grounds that if we continue the expansion of (3.2) 
to higher orders, the asymptotic form of the solution 
for A (p2) will be 

A(p2)~Ao(l/p2)9M, (3.19) 

where g(a0) will be given as a power series in a0. To 
compute g(ao) correctly to order a0

n, all terms in Eq. 
(3.2) up to the ^th order are required. I t should be 
noted that in general the equation for A will have an 
wth-order kernel containing lower order vertices which 
are finite, as well as "irreducible" parts which contain 
A. The former converge, since the lower order vertices 
are finite by reason of our choice of gauge in lower 
orders. We also assume that the irreducible terms 
converge if A vanishes as p2 —» <*>. This is clear if one 
employs the same arguments that are used to show 
that only vertex renormalizations are needed in pertur­
bation theory. Returning to the special case of the 
fourth order, from Eq. (3.17) we can compute g(ao) 
correct to order ao2, This is done in Appendix B and we 
obtain 

3ao 21/ceo\2 

g(ao) = — + - ( - ) . (3.20) 
4TT 32 W / 

Let us summarize our results. Under the assumptions 

(1) WD(k*)-l-*0 as &2~-»oo, (3.21) 

(2) m0=0. (3.22) 

We have established according to (3.2) a perturbation 
procedure for the calculation of the asymptotic form 
of the electron Green's function. The result is 

1/S(p) = ypll+B(p2n+A(p2), (3.23) 

where B —> 0 in a manner determined by the corrections 
to the limit (3.21), while A is given by (3.19). To 
fourth order the exponent g(ao) is given by (3.20). 
Naturally, we can say little about the convergence of 
the power series for g(ao). One might remark, however, 
that many fewer terms arise to contribute to g in a 
given order, than contribute to S in renormalized 
perturbation theory in the same order. 

Of course, everything hinges upon the fact that 
D(k2)^l/k2, as k2—> oo.. I t should be emphasized that 
the perturbation method developed here is valid only 
in the asymptotic region. (3.12), (3.17), etc., will not 
necessarily be valid equations treated in a nonperturba-
tive way for finite momenta. In that domain, ordinary, 
renormalized perturbation theory should be used. 

IV. VERTEX AND WARD'S IDENTITY 

From our previous discussion it is clear that (3.5) 
possesses finite solutions for TM even in perturbation 
theory. The interest of studying this equation in a 
nonperturbative approximation arises when we want 
to compute the electrodynamic contributions to p(k2) 
according to (3.8). From (3.8) it is clear that the 
precise nature of the asymptotic corrections to TM must 
be known in order to calculate these corrections to D. 
We will study this problem in detail in our paper on 
the D function. In this section we will discuss the 
relation to the solutions of (3.2) and (3.5). The purpose 
of this discussion is to indicate that a certain amount of 
care must be used in giving unambiguous definitions to 
the conditionally convergent integrals that arise in 
these equations to ensure their consistency. 

In the first approximation the equation for S has the 
form (with wo=0), 

1 r {dp') 

S(p) J (2TT)4 

We have shown that in the Landau gauge, the right-
hand side contains no divergence. However, if we 
assume that 

S(p)~l/yp (4.2) 

as p —> oo, then the integral 

ie<? / — -D a l ) { l>-P ' )T—T» (4.3) 
J (2x)4 yp' 
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is of course, at best only conditionally convergent. If 
the evaluation is made with the rule that the integral 
is performed using hyperspherical coordinates and the 
integrations over the angles of the vector p' are done 
first, then the value zero is obtained for (4.3). We shall 
assume that it is possible to evaluate such conditionally 
convergent integrals in each order, to obtain the value 
zero, so that a finite Z2 will mean that S(p) is always 
asymptotically 1/yp. We give such a method below. 
This method will be equivalent to a calculation of Z2 

from the imaginary part of the mass operator by 
means of the spectral representation 

1 
-=yp- - fdh 

J 1 

r(k) 
(4.4) 

S(p) J k+yfi 

A finite Z2 means that r(k) is such that 

f(dk/W)r{k)<™. 

If we differentiate Eq. (4.1) with respect to p we 
find: 

1 

dp* S(p) 
--yx+iets 

= Y ie<? I - — 
J 0.x 

W) d 
{2irfdp* 

(dp') & 

•DaeU'-p'h'Stp'W 

(Da?(p-p')rs(p')yfi) 
QrYdpx' 

f W) d 
+ie<? / Da^p-p')r-—S(p')y^. (4.5) 

J (2ir)4 dp*' 

If we evaluate the second term in this expression we 
find that it is equal to — (3a0/8ir)7x, so 

1 / 3ao\ f (dp') 
—=TA 1 j-ieo2 / ——p«»(p-p')r 
(p) \ 8TT/ J (2TT)4 dpx S(p) 

XS(p') -( )s(p')y?>. 
dpAs(p') 

(4.6) 

Consequently, if we wish Ward's identity to hold, then 
the vertex equation must be (in this approximation) 

/ 3a0\ f ( # ' ) 
T\(P+k,p)=yx[l-—)-W —-P«e(p-Pf 

\ ST/ J (2TT)4 
0 

Xy«S(p'+k)r*(p'+k, p')S{pf)y? (4.7) 

rather than (3.5), which was obtained from the formal 
derivation. We see that this minor ambiguity in 
momentum-space integration (or in coordinate space, 
in functional differentiation) results from the fact that 
the self-energy integrals are only conditionally con­
vergent. Thus, free changes of the intermediate-
momentum variables is not permitted. This defect does 
not persist in the equation for the vertex and one may 

freely translate the momentum variables by constant 
vectors. We may thus anticipate that in general the 
vertex equation will have an inhomogeneous term 
which is a finite function of a0 multiplying y^ which 
can be evaluated in any order by replacing, for zero 
momentum transfer at the vertex, S(p) and D(k) and 
Tp(p,p) by their exact asymptotic forms (1 /7^ ,1 /& 2 ,Y M ) 
in the integrals. The result will be that the infinite 
series in the equation for FM will give a series of constants 
multiplying y^ since TM is dimensionless, and all 
logarithmic divergences have been canceled. Thus, with 
an appropriate choice for the constant we will get 
T„ —> 7M. This will guarantee that the asymptotic forms 
for S and FM are consistent, and that Ward's identity 
(gauge covariance) will be satisfied. Since in the vertex 
equation, free translation of the momentum variables is 
permitted, we shall assume as a standard form that 
the external momentum always appears in the electron 
functions and not in the photon functions. Then if we 
go backwards to get the equation for 5 from that of 
F^, the integration by parts in (4.5) is avoided. How­
ever, we then obtain, as our equation for 1/S(p), one 
in which the inhomogeneous term yp multiplies the 
constant C(«o). However, we know from the discussion 
above that 1/5 —>• yp. In fact, it is easily verified that 
if we translate the momentum in (4.7) and integrate, 
we get instead of (4.1) 

1 / 3a0\ r (dk) 
=yp[ 1 )+ieo2 / Dai 

S(p) \ 8TT/ J (2TT)4 
«fi(k)y*S(p+k)yf>, 

where the rule is now to integrate symmetrically over k. 
If we proceed in this manner in the general case, we 
obtain an unambiguous equation for S with the asymp­
totic behavior for 5 , S —•> 1/7^. 

V. CONCLUSIONS 

We have developed a perturbation theory for 
quantum electrodynamics based upon a power-series 
expansion in the "bare" or unrenormalized coupling 
constant ao, which yields a finite result for the "re-
normalization" constants Z i (=Z 2 ) and self-mass dm, 
provided only that wo=0, that is, that the electron 
mass is totally dynamical. The only assumption made 
is that this same perturbation theory and all other 
interactions yield a finite value for the charge renormali-
zation Z3. We have found that this solution is obtained 
without restriction on the coupling constant.1 We have 
seen that the mass term was obtainable as the result 
of the fact that a homogeneous linear integral equation 
has finite solutions for all values of the coupling 
parameter ao.7 Thus, one can view the mass as self-
generating in virtue of the singular nature of the 
relativistic coupling which provides an integral equation 

7 This kind of idea was first clearly expressed by Y. Nambu and 
G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). 
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with a continuous eigenvalue spectrum. If we attempt 
to "force" a mass on the field by driving the system 
with a mechanical mass, then we obtain divergences. 
The requirement of a finite physical mass then acts 
as a normalization condition which fixes the scale of 
the solution of the homogeneous integral equation. 
We accordingly see that the "symmetry-breaking" 
character of this solution is the result of the fact that 
there is a certain "eigenvalue" character for the coupling 
which, however, holds for a continuous spectrum of 
eigenvalues, rather than for a discrete set as in non-
relativistic examples. As has been previously suggested, 
the fact that this integral equation has such solutions 
does not necessarily imply8 the existence of zero-mass 
scalar (or pseudoscalar) states.9 

From the point of view of the renormalized functions, 
the result we have obtained could be expressed by 
observing that if one could compute S(p) to all orders 
in a, and then examine the asymptotic behavior of the 
sum, one should find that, in our gauge, S(p) —» 
\/yp-\- (l/p2)A, where A —> 0. That is, if one computed 
the mechanical mass, one would obtain, as a result, 
zero, not, as usually is assumed, a result proportional 
to the physical mass. 

There remains the basic problem of studying the 
charge renormalization. We shall do this in a subsequent 
paper. 

We also see that it does not appear as if within a 
purely electrodynamic context that the \i-e mass 
difference can be understood.10 The coupling between \x 
and e comes only through the vacuum polarization and 
our basic assumption (Z3 finite) has been that this 
does not influence the asymptotic form of S. Hence it 
would appear as if an arbitrary mass ratio is allowed, 
since asymptotically, the electron and the /*-meson 
Green's function would obey uncoupled homogeneous 
equations, and hence we would seem to have the 
freedom of two constants A oe, A oM to be used to fit an 
arbitrary mass ratio. 
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When the vector p2 is space-like (>0) we can use 
hyperspherical coordinates in Euclidean space. In this 
case (3.15) becomes 

A(?)-
3ao 

4TT 
•/ dp"- MP'2), (Al) 

where we use the fact that the average of D(p—p') 
over all angles of the four-vector p' is simply 

1 = 1 / / , p>p', 
(D{p-p>))=— " ' r *' (A2) 

P>*=l/p*, p'>p. 

Equation (Al) can be solved either by simply substi­
tuting A = (1/p2) eA o, or by observing that the solution 
to (Al) also obeys the differential equation with p2=x, 

- ( 
dx\ 

x2,— 1 = -
dxJ 

3a o 

4TT 
-A(x). (A3) 

If we put A(x)=(l/xe)A0 we obtain from the differ­
ential equation two solutions 

€ = | [ l ± ( l ~ 3 « o A ) 1 / 2 ] . (A4) 

Since, however, (A2) is only valid for small a0, this 
means 

€ = 1 — 3ao/47r, 

— 3ao/4x. 

Although both of these solutions obey (Al) separately, 
only the lower one is consistent with the requirement 
that the asymptotic domain (large pf>p) contribute 
primarily to the function A. 

APPENDIX B 

To determine the gauge in which Z2 is finite in this 
case it is most convenient to use the equation for the 
vertex rather than for S. To obtain the "divergent" 
parts we can then put S —» 1/yp, D —> 1/k2 and the 
external momentum equal to zero. If we let 

Daf°=[g«e-
kakpf ao \"]1 
— 1 + - 7 
k2 \ 4TT / k2 

(Bl) 

in the second-order term and use Da^ in the fourth-order 
term and require a cancellation of divergence, we 
obtain an expression for y. Thus we require that 

f (dk) 1 
ieo2 ^ ^ D / Y -

1 
Dap

aoya—YX—7 
(2TT)4 yk yk 

(dk0(dk2) 
+ (ieo2} •I-
X 

(2TT)8 

1 1 1 
—7x 7 M — 

L7&1 7*1 yk 

-A*°(*i)zvte)7a 

l l l l 
3 1 7ju 7 x — 
yk2 yk\ 7&3 7&3 

1 

1 

yk2 

CB2) 
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be finite, where &3=&i+&2. Only the middle term, 
corresponding to the first fourth-order graph in Fig. 3, 
diverges. To cancel that with the a<? contribution from 
the second-order graph requires 7 = — §. 

We then may compute the contributions of the 
fourth-order terms to the mass operator. To do this 
we substitute into (3.2) for the electron Green's func­
tion the expression 

S->l/yp+A(j?)/f, 

and in the fourth-order terms retain only the contribu­
tions linear in A. We then obtain the equation for A, 
accurate in the asymptotic region in hyperspherical 
coordinates. 

A{f) = e« 
(#') 

\ ST/J (2TT)4 

A(p") 

-eo I (dp') (dp") 

( 2 T ) « 
•Dae(p-f)D„{p-p") 

A(p'*) YAW 

H—r X T I y»-
p'2 y(p'+P"-p) yp" 

l A(p'+p"-p) 
_| yfl y M 

yp' (P'+P"~P)2 yp" 

+-
Mp"2)' 

rvp 

yp' y(p'+p"~p) p"2 J 
(B3) 

I t follows immediately by counting powers that if 
A->Ao(l/p2)e then the second term->^4 0 ( l /^ 2 ) e / ( € ) 
providing only that e > 0 (that is, that the integrals 
converge). To evaluate for small e, one may use the 
representation 

$r-r. >d\ 1 

l = »(e) 

x< (\+p*y 

d\ 1 

Me), 

X€ (X+l)2 

where for small e, n(e) —> 1. In this case, if one carries 
out integrations over the momenta, one will be left with 
a function of p2 and X, which as X —> 00 will approach 
Xo/X. That is, the second term will be proportional to 

>d\ 
~g(\P2), 

where for \^>p2, g(\p2) —> X0/X. But this means that if 
we want only the contributions of the second term of 
order 1/e, these will be 

r° dx\o r dz\o/ly x 0 / l \ e 

~ / / ( - ) ) . (B5) 
J » p 2 X€ X i » i 2 € z \p2/ e \p2/ 

Therefore, we need only compute X0, which is defined 
by the equation 

r (d^ (dp") 
Xo=-e 0

4 X/ Dttfi(j>' 
J (2x)8 

')D„(p") 

Xy 
r 1 1 1 

L y(p'+p") yp"(p>2+\y 

+- vt*yP-
1 

yp' yp" £(P'+P")2+*12 

+-
1 1 

}+x)2J 
(B6) 

yp' y(P'+P") (P"2+\) 

If we evaluate this we find 

Xo-0 

(that is, the graph is finite in perturbation theory in 
this gauge). Therefore, we obtain the equation for e 
correct to the second order in a0, 

3ao/ ao\ 
1 = — ( l + - > 

(B4) so 
4T\ ST/€(1—€) 

3ao 21/QJON2 

4a- 3 2 \ 7T / 
(B7) 


